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Abstract—The image quality of an image processing technique
in a real airborne spotlight Synthetic Aperture Radar scenario
mainly depends on its capability of correcting motion error
effects. Therefore we compare the frequency domain imaging
technique rotated Omega-K with explicit range cell migration
correction with the time domain algorithm global Backprojection
in their imaging quality by taking motion errors and scene size
as well as the squint and the depression angles into account.
The numerical investigations show that for a squint angle of
20◦ and a depression angle of 25◦ up to a limit of 5m motion
error magnitude Omega-K yields good image quality in terms
of Integrated Side Lobe Ratio for point targets with 200m
ground range distance to the spot center. For larger motion
errors or larger scene sizes the Backprojection algorithm should
be used to guarantee image quality with the disadvantage of
higher computational costs.

I. INTRODUCTION

In a real airborne Synthetic Aperture Radar (SAR)
scenario, environmental influences like motion errors lead
to low spatial resolution of the SAR image. Especially
small airplanes, like unmanned aerial vehicles (UAVs), are
vulnerable to motion errors. Frequency domain algorithms
require a straight flight path and a constant velocity, therefore
motion compensation techniques have been developed to
remove the effects of motion errors in raw data. Time
domain algorithms permit arbitrary flight paths, so that no
motion compensation is necessary. However, the global
Backprojection algorithm, as the most common representative
of this algorithm-family, has high computational cost of
O(N3), whereas the computationally efficient frequency
domain method Omega-K performs only O(N2 log2N)
operations. Here N is the number of slow-time samples for
an image with N ×N pixels.
The quality produced by an image processing technique
mainly depends on its capability of correcting motion error
effects. Because the first order motion compensation of the
standard squinted Omega-K algorithm uses the center beam
approximation, only the spot center is perfectly focused.
With increasing ground range distance to the spot center the
spatial resolution decreases rapidly, so that we do not involve
this algorithm in our comparison. The rotated Omega-K
algorithm with explicit range cell migration correction [5]

was developed to perform a second motion compensation [6]
in the squinted case. It compensates the residual phase error
remaining from its first motion compensation [4] depending
on the distance to every range cell. Consequently, the whole
scene is better focused.
Moreover the global Backprojection algorithm [12] enables
processing images with arbitrary center position, image-size
and image-resolution. No additional motion compensation
is necessary and no restriction of the scene size has to be
considered.
Vu et. al. [7] and Hunter et. al. [8] compared the Omega-K
algorithm with the fast factorized Backprojection in image
quality. However, the squinted case was not considered and
no qualitative evaluations regarding motion errors have been
published.
For this reason, we focus on the problem of finding the
limits of motion error magnitude between rotated Omega-K
with explicit range cell migration correction [6] and global
Backprojection [12] with respect to acceptable SAR image
quality in terms of Integrated Side Lobe Ratio (ISLR). We
assume that the real flight path is accurately measured by an
onboard GPS/IMU system and thus available.
We find the range of applicability of both algorithms by
computing the ISLR as a function of ground range distance
to the scene center, motion error magnitude, squint angle
and depression angle for several perturbed flight paths.
Additionally, in order to reduce computational time we
develop a technique for shifting an image in frequency
domain that allows processing smaller SAR images (e.g.
8k × 8k pixel instead of 64k × 8k) by Omega-K and avoids
creating an image of the whole scene.

In the following, Section II introduces the signal model;
Section III and V give a short summary of both compared
algorithms. The technique for shifting an image in frequency
domain is introduced in Section IV. Numerical experiments
are presented in Section VI. The results including an example
of an X-band system are shown in Section VII, followed by
conclusions in Section VIII.



II. SIGNAL MODEL

Let an airplane fly with constant velocity v0 ∈ R+ along a
straight line γ : L → R3 of length L ∈ R+. This flight path is
parameterized by γ(s) = (v0s − L/2, y0, z0)> for slow time
s ∈ L := [0, L/v0] and constant y0, z0 ∈ R+.
We model motion errors by a 3D colored noise function
nσ : L → R3, i.e. we use additive Gaussian white noise with
standard deviation σ ∈ R+ and a lowpass-filter with fixed
cutoff frequency of 1.5 Hz in x, y and 1.5 Hz in z. For the
lowpass-filtering we choose a Hann window function. Thus,
the perturbed flight path γ̃σ is generated by

γ̃σ(s) = γ(s) + nσ(s), s ∈ L .

Note that the parameter σ controls the magnitude of the noise
nσ . Furthermore, let the ground be a plane in the xy-axes
at z = 0. The scene consists of one point target at pt =
(xt, yt, 0)> ∈ R3 and is represented by the reflectivity function
V (x, y) = δ(x − xt, y − yt) with x, y ∈ R. This brings us to
the signal model given by Cheney [9] of the received signal

d̃(t, s) =

∫
R
gc(τ, s) p(t− 2τ

c ) dτ, (1)

which depends on fast time t ∈ T with sampling time interval
T and slow time s ∈ L. Let the pulse p be a chirped pulse
with shape p(t) = rect( tT ) e−2πifct eiπγt

2

for t ∈ R, fc the
carrier frequency, γ the chirp rate, T the pulse duration and c
the speed of light. Here the circular radon transform gc of the
reflectivity function V has the form

gc(τ, s) =

∫
R2

V (x, y) δ
(
τ −R(s, x, y)

)
dxdy

= δ
(
τ −R(s, xt, yt)

)
,

with distance R(s, x, y) := ||γ̃σ(s) − (x, y, 0)>||2. Applying
the range compression and the stationary phase approximation
yields the range compressed data

d(t, s) = d̃(t, s) ∗ p∗(−t)

≈ T rect( sL ) sinc
(

2πB
c

(
t− 2R(s,xt,yt)

c

))
(2)

· e−4πifcR(s,xt,yt)/c

of one point target. Note that the antenna pattern is not
considered in this signal model.

III. ROTATED OMEGA-K WITH EXPLICIT
RANGE-MIGRATION CORRECTION

The rotated Omega-K algorithm with explicit range-
migration correction [5] was developed to perform a second
order motion compensation [6], see Figure 1. After the Stolt
interpolation the SAR data D = F t,s{d} in 2D frequency
domain (kr, kx) is rotated by θs through(

k̃r
k̃x

)
=

(
sin θs cos θs
cos θs − sin θs

)(
kr
kx

)
to remove the effect of the squint angle. Subsequently a shift

k̆r = k̃r −
√
k2
c − k̃2

x

with center wavenumber kc = 2fc/c allows to separate the
matched filter function H into two independent parts: Hrmc,
which realizes the explicit range-migration correction and Haz:

Hrmc(k̆r, k̃x) = e−ir0
(√

k̃2x+(k̆r+
√
k2c−k̃2x)2−k̆r

)
,

Haz(r̆, k̃x) = eir̆
√
k2c−k̃2x .

Thus, the SAR image can be processed by

I(r̆, x̃) =

∫
R2

D(k̆r, k̃x)Hrmc(k̆r, k̃x) (3)

· F r̆{Haz(r̆, k̃x)} ei(k̆r r̆+k̃xx̃) dk̆r dk̃x, (4)

where r0 is reference range to the scene center. Note that in
equation (3) the factor resulting from the integral transforma-
tions is neglected, because it is approximately one [3].
The second order MoCom [6] operates on the range-migration
corrected data, see Figure 1. It compensates the residual
phase error remaining from the first order MoCom [4] by a
modulation of

H2(r̆, x̃) = e−4πifc/c(φt(r̆,x̃)−φc(x̃)), with
φt(r̆, x̃) = 4y(x̃) cos θs cos θD(r̆)−4h(x̃) cos θs sin θD(r̆),

φc(x̃) = 4y(x̃) cos θs cos θD −4h(x̃) cos θs sin θD,

which depends on the distance r̆ to every range cell. Thus, not
only the spot center but also approximately the whole scene
is focused.

range compressed SAR data

Doppler shift correction

First order MoCom

2D FFT

Stolt mapping

Rotation by squint angle

Shift

Hrmc

2D IFFT

Second order MoCom

Azimuth FFT

Haz

Azimuth IFFT

SAR image

Fig. 1: Flowchart of rotated Omega-K with explicit range
migration including first order and second order motion com-
pensation.

IV. IMAGESHIFT IN FREQUENCY DOMAIN

Images, processed by Omega-K, are usually centered in
the scene center ps and show the whole scene, see Figure 2.
However, if only a small part of the scene has reflectors, like in
our synthetic case, the center pc of this region containing them
can be shifted to the image center by the well known Fourier
transform shift theorem. The shifted image is calculated by

I(r̆, x̃) =

∫
R2

D(k̆r, k̃x)Hrmc(k̆r, k̃x) F r̃{Haz(r̃, k̃x)}

· ei(k̆r r̆0+k̃xx̃0) ei(k̆r r̆+k̃xx̃) dk̆r dk̃x,

compare equation (3). The shift vector (r̆0, x̃0)> lies in the
evaluation plane and is calculated by

(r̆0, x̃0)> = m(ps)−m(pc).



By taking into account the individual depression angle θd(pc),
m : R3 → R2 maps points from the ground xy-plane to the
evaluation r̆x̃-plane by

m(pc) = ERsRd[pc] (pc−pf )

with

Rd[pc] =

(
1 0 0
0 sin θd(pc) cos θd(pc)
0 cos θd(pc) − sin θd(pc)

)
,

Rs =

(
sin θs cos θs 0
cos θs − sin θs 0

0 0 1

)
,

E =

(
1 0 0
0 1 0

)
and flight path center pf , which is its mid way point. Given
that our only reflector is at pc, we can accelerate the SAR
image computation by processing for example only 8k × 8k
relevant pixels instead of all 64k × 8k. In summary this
translation enables us to process small parts of the scene with
Omega-K to reduce computational time.

θs

z

γ̃σ

x

y

r

θd

ps

pt
r̄

r0

Fig. 2: Squinted spotlight SAR geometry. Relationship be-
tween perturbed flight path γ̃σ , squint angle θs, depression
angle θd, spot center ps, position pt of point target, ground
range distance r along the r̄-direction and reference range r0.

V. GLOBAL BACKPROJECTION

The global Backprojection algorithm [12] operates in time
domain (t, s), which is why images with arbitrary size and
image-resolution can be processed.
In a preprocessing step an image grid has to be defined. We
rotate this grid in the xy-plane by the angle θg about the
coordinates pc to reverse the effect of the squint angle θs.
Subsequently a high-pass filtering of the range compressed
baseband data d reverses the general smoothing effect of the
integral operator inside the data acquisition process described
by equation (1). A shift to the high frequency band of the
filtered data yields the filtered range profile

q(t, s) = F−1
t

{
π |ω| F t{d(t, s)}

}
e2πifct. (5)

A pulse by pulse mapping backwards to the predefined grid
on the ground creates the image

I(x, y) =

∫
L
q
(
c
2 R(s, x, y), s

)
ds. (6)

In this mapping the exact distance R(s, x, y) = ||γ̃σ(s) −
(x, y, 0)>||2 from platform position γ̃σ(s) to every pixel
center in world coordinates (x, y, 0)> is used. Hence, no
additional motion compensation is necessary and no restriction
on the scene size has to be considered. Our implementation
of the global Backprojection algorithm is based on Gorham’s
implementation [12].

VI. NUMERICAL EXPERIMENTS

We compare the quality of SAR images processed by
the rotated Omega-K algorithm with explicit range-migration
correction and the global Backprojection algorithm.
For different magnitudes of motion errors, ground range
distances to the spot center, squint angles and depression
angles we generate synthetic, range compressed data by
equation (2) and apply the rotated Omega-K algorithm
with explicit range cell migration correction and the global
Backprojection algorithm. The parameters of our simulated
airborne X-band SAR system are listed in Table I.

TABLE I: Parameters of simulated X-band SAR system.

Parameter Value

Carrier frequency fc 9.6GHz
Pulse bandwidth B 600MHz
Pulse duration T 6µs
Sampling frequency fs 600MHz
Platform velocity v0 100m/s
Synthetic aperture length L 400m
Pulse repetition frequency prf 2000Hz
Flying duration Tf 4 s

Each squint angle θs ∈ {0◦, 10◦, 20◦, 30◦} and each
depression angle θd ∈ {15◦, 25◦, 35◦} results in a scene with
reference range r0 = 10 000 m. Furthermore, we describe
the motion errors by the discretized standard deviation σ =
0, 0.5, . . . , 5 m of the perturbed flight path γ̃σ . These motion
errors have the highest impact regarding spatial resolution on
points along the r̄-direction, see Figure 2. Thus, we choose
the discretized ground range distance r = 0, 50, . . . , 500 m as
the distance from the spot center ps to the position pt of the
point target along r̄. Altogether, for every tuple (θs, θd, r, σ)
we compute the 1D azimuth ISLR

ISLR = 10 log10

(
P (−20 δx,− δx) + P (δx, 20 δx)

P (−δx, δx)

)
with

P (a, b) =

∫ b

a

|I(r̆0, x̃)|2dx̃,

where r̆0 is the range cell with maximal energy and δx the
spatial resolution in azimuth. No window function is used for
side lobe suppression. Motion errors are generated by a random
process, so we repeat this imaging process for every tuple
(θs, θd, r, σ) a few times and calculate the mean ISLR value.
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Fig. 3: Mean 1D azimuth ISLR of rotated Omega-K algorithm with explicit range cell migration correction. Every image
visualizes the spatial resolution for a scene with fixed squint angle θs and fixed depression angle θd. To achieve a clear scaling
we set positive ISLR values to zero. The standard deviation σ of motion errors is plotted along the x-axis and the ground range
distance r to the spot center along the r̄-direction is plotted along the y-axis, see Figure 2.

VII. RESULTS

The results of our numerical experiments are given in
Figure 3, where the sub-figure in the lower left corner presents
the case with smallest squint angle θs = 0◦ and smallest
depression angle θd = 15◦. In each direction, the squint angle
θs and the depression angle θd increase up to θs = 30◦ and
θd = 35◦ in the upper right sub-figure. The x-axis of every
sub-figure describes the standard deviation σ of motion error,
whereas the y-axis in every sub-figure shows the ground
range distance r to the spot center. Altogether, Figure 3 shows
the 1D azimuth ISLR depending on different squint angles,
depression angles, standard deviation of motion errors and
ground range distances to the spot center.
It can be seen in the lower left sub-figure that for θs = 0◦

and θd = 15◦ Omega-K yields good image quality even
for σ = 4 m, which means approximately 8 m motion error
magnitude, and a scene diameter greater then 300 m. By
increasing only the squint angle θs to 30◦ the lower right
sub-figure shows that Omega-K yields acceptable image
quality with an ISLR < 3 dB for again σ = 4 m. However,
this applies only up to 100 m scene diameter, which is clearly
a smaller scene size than in the zero-squint case. Additionally,
by increasing the depression angle θd the image quality
decreases drastically for all θs. In the case of high depression
angle θd = 35◦ small flight path deviations cause large image
errors. For a squint angle θs = 30◦ and a depression angle
θd = 35◦ only a small area around the spot center is well
focused for all motion error levels. This means that the value
of the depression angle crucially impacts the image quality in
the presence of motion errors for the Omega-K algorithm.

In general, this result verifies that the bigger the motion
errors or the scene size, the lower the azimuth ISLR of the
images generated with Omega-K. The specific behavior of
the ISLR value as a function of motion errors and scene
size mainly depends on the squint angle and the depression
angle. By increasing the squint angle θs or depression angle
θd the applicable range of motion error magnitude and scene
size decrease for the Omega-K algorithm. In particular, if no
motion errors occur, a scene with more than 500 m diameter
can be processed with almost optimal spatial resolution.
Additionally, for all motion error levels the spot center is
focused. However, in presence of motion errors the spatial
resolution decreases with increasing scene size depending on
the motion error magnitude.
On the contrary the Backprojection algorithm preserves spatial
resolution up to more than 500 m scene diameter and more
than 10 m maximal motion error magnitude (σ ≈ 5 m).

We illustrate our results on one example with parameters
θs = 20◦, θd = 25◦, r = 200 m and σ = 3 m. Figure 4(a)
shows the perturbed flight path. The corresponding SAR
images processed with Omega-K and Backprojection are
represented in Figure 4(b) and 4(c). The result in Figure 4(c)
is always as good as the ideal case, whereas in Figure 4(b),
effects of motion errors still can be seen.
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(b) Omega-K algorithm yields an ISLR =
−3.58 dB.

Cross-range r̆ [m]

R
an
ge

x̃
[m

]

 

 

5990 5995 6000 6005 6010

190

195

200

205

210

M
ag
n
it
u
de

[d
B
]

−40

−35

−30

−25

−20

−15

−10

−5

0

(c) Backprojection algorithm yields an ISLR =
−8.12 dB.

Fig. 4: Simulation results for one point target with ground range distance r = 200 m to spot center.

VIII. CONCLUSION

In summary, we have shown that depending on the squint
and depression angles the quality of an image processed with
Omega-K decreases with increasing magnitude of the motion
errors and increasing ground range distance to the spot center.
Based on these parameters and the required 1D azimuth ISLR
we can predict the applicability of Omega-K. For example
for a squint angle of 30◦, a depression angle of 15◦, motion
errors with a magnitude greater than 5 m and targets located
further away from the spot center than 300 m, Omega-K
cannot guarantee acceptable spatial resolution for an X-band
SAR system. In this case the Backprojection algorithm yields
almost perfect image quality with the disadvantage of high
computational cost.

REFERENCES

[1] I. A. Cumming, F. H. Wong, Digital Processing of Synthetic Aperture
Radar Data - Algorithms and Implementation, 1-th edition, Artech
House, Boston, 2005.

[2] D. C. Munson Jr., J. D. O’Brien, W. K. Jenkins, “A Tomographic
Formulation of Spotlight-Mode Synthetic Aperture Radar”, Proceedings
of the IEEE, Vol. 71, No. 8, pp. 917–925, August 1983.

[3] C. Cafforio, C. Prati, F. Rocca, “SAR data focusing using seismic
migration techniques”, IEEE Transactions on Aerospace and Electronic
Systems, Vol. 27, No. 2, pp. 194–207, March 1991.

[4] M. P. Nguyen, “Refined Motion Compensation for Highly Squinted
Spotlight Synthetic Aperture Radar”, pp. 738–741, 2012.

[5] M. P. Nguyen, “Range Cell Migration Correction for Phase Compensa-
tion of Highly Squinted SAR”, VDE VERLAG GMBH, Berlin, pp. 81–
84, 2014.

[6] M. P. Nguyen, Bewegungskompensation und Autofokussierung von SAR-
Rohdaten mit großem Schielwinkel, VDI Verlag, Düsseldorf, 2014.

[7] V. T. Vu, T. K. Sjögren, M. I. Pettersson, “A Comparison between Fast
Factorized Backprojection and Frequency-Domain Algorithms in UWB
Lowfrequency SAR”, Geoscience and Remote Sensing Symposium,
IGARSS, IEEE International, Vol. 4, pp. 1284-1287, 2008.

[8] A. J. Hunter, M. Hayes, P. Gough, “A Comparison of Fast Fac-
torised Back-Projection and Wavenumber Algorithms for SAS Image
Reconstruction”, World congress on ultrasonics, Societe Francaise
d’Acoustique, pp. 527-530, 2003.

[9] M. Cheney, B. Borden, Fundamentals of Radar Imaging, SIAM,
Philadelphia, 2009.

[10] P. Berens, Neue Signalverarbeitungsverfahren für SAR im Scheinwer-
fermodus, Shaker Verlag, 2003.

[11] S. H. Park, J. I. Park, K. T. Kim “Motion Compensation for Squint Mode
Spotlight SAR Imaging using Efficient 2D Interpolation”, Progress In
Electromagn. Research, Vol. 128, pp. 503–518, 2012.

[12] L. A. Gorham, L. J. Moore, “SAR image formation toolbox for
MATLAB”, Proc. SPIE, Vol. 7699, Algorithms for Synthetic Aperture
Radar Imagery XVII, 2010.


